11 research outputs found

    Scalable Reliable SD Erlang Design

    Get PDF
    This technical report presents the design of Scalable Distributed (SD) Erlang: a set of language-level changes that aims to enable Distributed Erlang to scale for server applications on commodity hardware with at most 100,000 cores. We cover a number of aspects, specifically anticipated architecture, anticipated failures, scalable data structures, and scalable computation. Other two components that guided us in the design of SD Erlang are design principles and typical Erlang applications. The design principles summarise the type of modifications we aim to allow Erlang scalability. Erlang exemplars help us to identify the main Erlang scalability issues and hypothetically validate the SD Erlang design

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Scalable Reliable SD Erlang Design

    No full text
    This technical report presents the design of Scalable Distributed (SD) Erlang: a set of language-level changes that aims to enable Distributed Erlang to scale for server applications on commodity hardware with at most 100,000 cores. We cover a number of aspects, specifically anticipated architecture, anticipated failures, scalable data structures, and scalable computation. Other two components that guided us in the design of SD Erlang are design principles and typical Erlang applications. The design principles summarise the type of modifications we aim to allow Erlang scalability. Erlang exemplars help us to identify the main Erlang scalability issues and hypothetically validate the SD Erlang design

    Core Erlang 1.0 language specification

    No full text
    We describe a core language for the concurrent functional language Erlang, aptly named “Core Erlang”, presenting its grammar and informal static and dynamic semantics relative to Erlang. We also discuss built-in functions and other open issues, and sketch a syntax tree representation
    corecore